THEMIS Data Users Workshop

Arizona State University Oct. 24-25, 2005

Workshop Objectives

 Send everyone home capable of producing projected multi-spectral color IR, emissivity, and temperature images

• Plan

- Describe where and how to get THEMIS data
- Discuss data processing and projection tools
- Present web-based processing system
- Give examples of science analysis using THEMIS data
- Demonstrate THEMIS GIS tool (JMARS)
- Provide hands-on training

Workshop Agenda

- Overview
- Discuss where and how to get THEMIS data
- Detailed THEMIS processing
 - Discuss each algorithm and processing step
 - Discuss problems and things to watch out for
- Output image types
- Web interface
- Science examples
 - Atmospheric correction
 - Multi-spectral analysis
 - Thermophysical properties

THEMIS Data Users Workshop Day 1 Schedule

Welcome	Phil C.	9:00-9:15
Overview Phil C.		9:15-10:30
TIR Spectroscopy Overview		
Instrument Overview		
Data Processing Overview		
Break		10:30-10:45
Selection and Extraction of Data	Noel Gorelick	10:45-11:15
Image Processing Tools	Josh Bandfield	11:15-12:00
UDDW		
Rectify		
Deplaid		
Auto-radcorr		
Unrectify		
Lunch		12:00-1:15
Image Projections/Cropping	Noel Gorelick	1:15-1:45
Output		1:45-2:15
Radiance/BT/Emissivity/Tsurf	Phil C.	
Isis/8-bit/DCS/Backplanes	Noel Gorelick	
Break		2:15-2:30
Data Analysis/Display Tools	Josh Bandfield	2:30-2:45
Decorrelation Stretch; 4-panel images		
Web Interface	Josh Bandfield	2:45-3:15
Science		
Atmospheric Correction/Spectral Unit Mapping	Josh Bandfield	3;15-3:45
Using THEMIS Spectral Data	Deanne Rogers	3:45-4:30
Thermophysics	Robin Fergason	4:30-5:15

THEMIS Data Users Workshop Day 2 Schedule

Mosaics	Phil	8:30-8:45
JMARS	Noel	8:45-10:30
Break		10:30-10:45
ENVI Software Tools	Jen	10:45-11:45
Lunch		11:45-1:00
Hands-on Training		1:00-3:00

Overview

- IR spectroscopy overview
- THEMIS instrument overview
- Instrument characteristics
- Data processing overview
- Examples of THEMIS data products

IR Spectroscopy Overview

Glossary

- Spectral Radiance (Radiance): R(λ)
 - Total energy emitted per unit area, angle, and wavelength
 - W m⁻² str⁻¹ μm⁻¹
- Blackbody
 - An ideal body that emits with maximum thermodynamic efficiency (Planck function)
- Emissivity: $\varepsilon(\lambda)$
 - Ratio of actual emitted radiance to that of an ideal blackbody

Glossary (2)

- Brightness Temperature: $B_T(\lambda)$
 - The temperature at each wavelength of a blackbody emitting the measure radiance
- Surface (Target) temperature
 - The maximum brightness temperature over wavelength range

Infrared Multi-spectral Imaging

THEMIS Instrument Overview

Spectroscopy

Infrared Mapping

Multi-spectral Imaging

Temperature

THEMIS Investigation

- 9-band multi-spectral IR imager
 - Uncooled microbolometer
 - 6.5-15.5 µm
- 5-band visible imager
 - 0.43-0.85 µm
- 100-m spatial resolution in IR
- 18-m spatial resolution in visible
- Global coverage in IR (day and night) and 1-band visible during primary mission
- Mass: 12.2 kg
- Size: 29 x 38 x 55 cm
- **Power:** 14 W

Moving THEMIS Into Vacuum Chamber at SBRS

THEMIS IR Filters

THEMIS Spectral Bands

IR Band	Center Wavelength	Bandwidth
2	6 78	1.01 µm
2	0.70	1.01
3	7.93	1.09
4	8.56	1.16
5	9.35	1.20
6	10.21	1.10
7	11.04	1.19
8	11.79	1.07
9	12.57	0.81
10	14.88	0.87
VIS Band		
1	0.425	0.049
2	0.540	0.051
3	0.654	0.053
4	0.749	0.053
5	0.860	0.045

Data Processing Overview

 THEMIS measures the spectral radiance difference between the detector array and the scene

 Measure a calibration flag - use this to determine the radiance from all the pixels in a scene

- Close and observe the DN of the calibration flag/shutter at the start and of each IR image
 - Gives the calibration value for: ∆ DN vs ∆ radiance
 - Assume constant pre-launch gain
 - Can then compute ∆ radiance for each pixel in scene
 - Use temperature (radiance) of the flag to convert ∆ radiance to the actual temperature of each pixel in the scene
- However closing the shutter subtly changes the thermal environment on the detector array

Issues

- Don't directly measure the temperature of the flag.
 - Flag moves don't want wires attached
 - Measure housing it sits next to when open
 - Assumed to be uniform temperature it may not be
- Closing the shutter subtly changes the thermal environment on the detector array
 - Focal plane temperature controlled to ±0.001° C
 - 0.001° C temperature change produces 2-3 DN signal change
 - Changes due to scene itself
 - Produces drift in calibration along image

Detector Temperature Drift

Instrument Characteristics

- Problems and Issues
 - Normal noise
 - Greatly accentuated whenever one does a ratio or color stretch
 - Focal plane temperature drift
 - 0.001° C temperature change produces 2-3 DN signal change
 - Changes due to scene itself
 - Stray light due to bracket that holds the IR/VIS beamsplitter ("ghost")
 - Downwelling and upwelling radiance

Data Processing Overview

Calibration

Noise Removal

Stray Light Removal

Time-dependent Signal Drift Removal

Geometric Projection

Band Uncorrelated Noise Removal

Radiance Correction

Output Images

Standard Data Products

Processing Overview (con't)

Output Images

Brightness Temperature

Multi-spectral Color IR

Surface Temperature

Emissivity

THEMIS Data Processing Flow

Reverse Scan with Focused "Ghost"

THEMIS IR Earth-Moon Image - Stretched

THEMIS "Ghost"

Examples of THEMIS Data Products

THEMIS Multispectral IR

Visible

THEMIS Night IR

THEMIS Night IR over Day IR

MARS ODYSSEY MISSION THERMAL EMISSION IMAGING SYSTEM

ADDITIONAL RESOURCES FOR:		
ABOUT THEMIS AND ODYSSEY		
MAP OF ALL IMAGES		
IMAGE OF THE DAY		
IMAGE GALLERY		
DISCOVERIES		
SOFTWARE		
MISSIONS		
ASU		
2 + 3 - 1 - 1		
"LIVE" from Mars		

0)

Feature of the Week

GANGES CHASMA

ore Mars

A portion of the Valles Marineris canyon system contains several enormous overlapping landslides and provides a view into the misty depths of martian geologic time.

NASA

MOST RECENT IMAGES OF THE DAY

CONTACT SITE MAP TERMS OF USE

Raytheon Santa Barbara Bernete Sendaling

Infrared Color Imaging: Composition

Temperature: Physical Properties

THEMIS Camera

Visible Imaging: Processes

THEMIS Science Objectives

- Determine mineralogy and petrology of localized deposits, including hydrothermal or sub-aqueous environments
- Provide direct link to hyperspectral mineral mapping from MGS TES
- Study small-scale geologic processes using morphologic and thermophysical properties
- Search for thermal anomalies associated with active hydrothermal systems

